# A FRACTURED AQUIFER AND ENGINEERED BARRIER - METHODS AND TOOLS OF AN EVALUATION

#### Jana Kasíková, Milan Brož, Martin Milický, Petr Novák, Lucie Nováková, Michal Polák, Karel Sosna, Michal Vaněček, Jiří Záruba

Engeopro-2011

With the support of the Ministry of Industry and Trade of the Czech Republic (Project No: 1H-PK/31 MPO ČR)



### **OVERVIEW**

- Introduction
- Objectives
- Locality
- Tests
  - In the laboratory
  - In the field
- Mathematic modeling
- Conclusion

Safety Assessment Technician





SG Geotechnika Corp. (ARCADIS Geotechnika Corp.)



With the support of the Ministry of Industry and Trade of the Czech Republic (Project No: 1H-PK/31 MPO ČR)

#### INTRODUCTION

'Methods and tools for evaluating the effects of engineered barriers on distant interaction in the environment of a deep repository facility'

Need of safe disposal – radionuclides fixing and sealing
Barriers – natural (mineral), geotextiles





#### **OBJECTIVES**

- Main goals:
  - Detail description of a fractured aquifer
  - Methodological procedures
  - Prediction by mathematic modeling



#### LOCALITY



Published by Czech Geological Survey - www.geology.cz | Copyright: Czech Geological Survey (CGS), Topography: Copyright ARCDATA Praha, s. r. o., 2003 © Česká geologická slučba, Topografický podklad ARCDATA Praha, s. r. o., sroen 2003



### STRUCTURAL GEOLOGICAL MAPPING

#### Stereogram of the jointplanes poles

lower hemisphere, 153 measurements





Panské Dubenky quarry face



#### **PERFORMED WORKS**

#### Laboratory works





#### **Field works**



#### **Mathematic modeling**



### LABORATORY WORKS

- Basic characteristics of granite, fracture network and barriers
- Physical properties, description of discontinuities, hydrodynamic and fluid migration tests









### LABORATORY WORKS

 Hydrodynamic and migration tests → volume flow rates, barrier conductivity coefficients, penetration curves for each of the tracers

•Tracers: NaCI-solutions and Na-Fluorescein

•Attained data allowed preliminary mathematic modeling and fieldwork planning

Natural and artificial barriers







### **FIELDWORK**

- Polygon app. 400 m<sup>2</sup>, 14 shallow boreholes (7 – 10 m)
- Model of fracture network from structural research, borehole inspection, seismic data, multi-electrode resistivity
- Sludge and pumping tests

ATech s.r.o

- Cross-hole tracer tests (for mathematic model calibration)
- 3 boreholes were sealed, bentonite-based barrier used and C-H tests repeated







## CONECTIVITY OF THE FRACTURE NETWORK

#### Scheme of performed tests

**Experiment instrumentation** 



ISATech s.r.o.

Animation\_Sodium\_Fluorescein\_Detection.wmv

### **MATHEMATIC MODELING**

- Chosen software: NAPSAC and FEFLOW
- NAPSAC 9.3 9.7.2
  - for geometry, convection and transport of the discrete fracture networks
  - incapable of transient simulation analysis in variably saturated environments

#### • FEFLOW 5.2 - 5.3(64)

- allows single joints to be entered in the porous or impermeable environments
- incapable of geometrically authentic single joint or fracture network simulation
- simulation at laboratory scale and assessing the influence of the barrier





#### **MATHEMATIC MODELING**

- Data processing for the model of in-situ tests
- Terrain digitalization







#### DATA PROCESSING FOR IN-SITU TESTS' MODELING

- Borehole documentation
- Geophysical survey







### **MATHEMATIC MODELING**





#### **CALIBRATION OF JOINT OPENING**



#### ASSESSMENT OF MATHEMATIC MODEL PREDICTION ABILITY

| Test name                                                    |       | 1009m1 (with the barrier) |
|--------------------------------------------------------------|-------|---------------------------|
| From the well (joint) - to well (joint)                      |       | 11 (93.27) 10 (93.72)     |
| Joints involved in test                                      |       | H.IV2                     |
|                                                              |       |                           |
| Water-level difference between the wells during the test [m] |       | 6.66                      |
| Waterflow capacity [l/s]                                     | Model | 0.013                     |
|                                                              | Test  | 0.0062                    |
| Time of tracer inflow [s]                                    | Madal | 120                       |
|                                                              |       | 135                       |
|                                                              | Test  | 135                       |



### CONCLUSIONS

detailed description of surveyed area

 very good prediction ability of mathematic modeling

applicable also for engineered barrier





#### THANK YOU FOR YOUR ATTENTION

